
CS 4530: Fundamentals of Software Engineering

Module 12: Testing Larger Things

Adeel Bhutta, Mitch Wand

Khoury College of Computer Sciences

1

© 2024 Released under the CC BY-SA license

https://creativecommons.org/licenses/by-sa/4.0/

Learning Objectives for this Lesson

• By the end of this lesson, you should be prepared to:
• Design test cases for code using fakes, mocks and spies

• Explain why you might need a test double in your testing

• Explain why you might need tests that are larger than unit tests

• Explain how large, deployed systems lead to additional testing challenges

2

Why do we test?

• Unit Testing
• Does the SUT satisfy its specification?

• Integration Testing

• Do the SUT and its context work correctly together?
• Acceptance Testing
• Does the SUT satisfy the customer

• “Good” test suite answers: Are we building the right system ?

3

Unit Testing

What does it mean for a unit test to
succeed?

• Test Oracles define the criteria for a test to
suceedPossible kinds of test oracles

• Function returns the exact “right” answer

• Function returns an acceptable answer

• Returns the same value as last time

• Function returns without crashing

• Function crashes (as expected)

• Function has the right effects on its environment

5

Story so far: Tests Check Return Values

6

test('addStudent should add a student to the database', () => {
// const db = new DataBase ()
expect(db.nameToIDs('blair')).toEqual([])

const id1 = db.addStudent('blair’);

expect(db.nameToIDs('blair')).toEqual([id1])
});

export interface IClockWithListeners {
reset():void // resets the time to 0
tick():void // increment time and notify all listeners
// add a listener and initialize it with the current time
addListener(listener:IClockListener):void

}

export interface IClockListener {
// @param t - the current time, as reported by the clock
notify(t:number):void

}

export class ProducerClock implements IClockWithListeners {
// some implementation

}

Challenge: How to test the ProducerClock?

7

clockWithObserverPattern.test.ts

Mo

Test doubles replace uncontrollable things
with things that you do control

8

Network
Resources

Database

The SUT

Human User

“Test Doubles” Stand In For Other
Components

• Act as a stand-in for components, allowing for
testing in isolation

• Fakes: Replace client implementations with
dummies for testing

• Mocks: Automatically-generated fake
implementations for an interface

• Spies: Automatically-instrument internals of
objects, classes or modules

You could test the Producer Clock with a
hand-built test double (a "fake")

class ClockListenerForTest implements IClockListener {
private _time : number = 0
constructor (private masterClock:IClockWithListeners) {

masterClock.addListener(this)
}
notify (t:number) : void {this._time = t}
getTime () : number {return this._time}

}

clockWithObserverPattern.test.ts

export interface IClockWithListeners {
reset():void // resets the time to 0
tick():void // increment time and notify all listeners
// add a listener and initialize it with the current time
addListener(listener:IClockListener):void

}

Now we can test using the fake observer

import { ProducerClock } from "./clockWithObserverPattern";

const clock1 = new ProducerClock
const listener1 = new ClockListenerforTest(clock1)

describe("tests for ProducerClock", () => {
test("after reset, listener should return 0", () => {

clock1.reset()
expect(listener1.getTime()).toBe(0)

})
test("after one tick, listener should return 1", () => {

clock1.reset(); clock1.tick()
expect(listener1.getTime()).toBe(1)

})
test("after two ticks, listener should return 2", () => {

clock1.reset(); clock1.tick(); clock1.tick()
expect(listener1.getTime()).toBe(2)

})
})

clockWithObserverPattern.test.ts

Does using the fake listener solve the
problem?

• Good news:

• It works!

• It doesn’t require learning other
libraries

class ClockListenerForTest implements
IClockListener {

private _time : number = 0
constructor (private

masterClock:IClockWithListeners) {
masterClock.addListener(this)

}
notify (t:number) : void

{this._time = t}
getTime () : number {return

this._time}
}

• Bad news:

• It’s a maintenance burden (what if new
methods are added to IClockListener?)

• It took manual effort to write

• Richer fakes (e.g. track how many
times a method called) would take
even more effort to write

Mocks are automated fakes

• Jest’s mocks return “undefined” by default (can be customized), and
track calls to the function

test("simplest mock behavior", () => {
const mockFunction1 = jest.fn();

const result1 = mockFunction1("17");
const result2 = mockFunction1("42")

expect(result1).toBeUndefined();
expect(result2).toBeUndefined()

expect(mockFunction1).toHaveBeenCalled();
expect(mockFunction1).toHaveBeenCalledTimes(2);

expect(mockFunction1).toHaveBeenCalledWith("17");
expect(mockFunction1).toHaveBeenCalledWith("42")

});

You can customize your mock in many ways
test("customizing mock functions", () => {

// you can specify the the return value
const mockFunction3 = jest.fn();
mockFunction3.mockReturnValue("baz");

expect(mockFunction3(17)).toBe("baz");
expect(mockFunction3).toHaveBeenCalledWith(17);

// or give the mock an implementation
const mockFunction2 = jest.fn()
mockFunction2.mockImplementation((n: number) => n + n);

expect(mockFunction2(3)).toBe(6);
expect(mockFunction2(14)).toBe(28)
expect(mockFunction2).toHaveBeenCalledWith(3);
expect(mockFunction2).toHaveBeenCalledWith(14);

// you can also reset the mock's history and implementation
mockFunction2.mockReset()
expect(mockFunction2).not.toHaveBeenCalledWith(14);

});

Jest’s Mock API: https://jestjs.io/docs/mock-function-api

simpleMocks.test.ts

MockReset erases history; returns

implementation to 'undefined'

https://jestjs.io/docs/mock-function-api

You can mock Classes and Interfaces using
Jest-Mock-Extended
import { mock, mockClear } from 'jest-mock-extended';
import { IClockListener, ProducerClock } from './clockWithObserverPattern';

const clock1 = new ProducerClock();
//Automatically create an implementation of IClockListener, each method is a mock function
const listener1 = mock<IClockListener>();
clock1.addListener(listener1);

describe('tests for ProducerClock', () => {
beforeEach(() => {

mockClear(listener1); //Clear the mock function's history
});
test('after one tick, listener should have been notified with 1', () => {

clock1.reset();
clock1.tick();
expect(listener1.notify).toHaveBeenLastCalledWith(1);

});
test('after two ticks, listener should have been notified with 1 and 2', () => {

clock1.reset();
clock1.tick();
expect(listener1.notify).toHaveBeenLastCalledWith(1);
clock1.tick();
expect(listener1.notify).toHaveBeenLastCalledWith(2);
expect(listener1.notify).toHaveBeenCalledTimes(2);

});
});

clockWithObserverPatternMock.test.ts

https://www.npmjs.com/package/jest-mock-extended

All the methods of

IClockListener are mocked.

Construct a mock listener

(1 line!)

https://www.npmjs.com/package/jest-mock-extended

Unlike mocks, spies instrument existing
implementations

• Consider cases where you don’t want a complete
fake, but do want to check side-effects:

• What was sent on the network?

• How many times was a problem logged?

• What was inserted in the database?

• Jest can automatically instrument existing code to
make it into a “spy” – a mock but with the original
implementation

Spy

"remembers"

Real

implementation

is used

Use jest.spyOn to create a spy on an object
import { ClockListener, ProducerClock } from './clockWithObserverPattern';

const clock1 = new ProducerClock();
const clockClient = new ClockListener(clock1);
const notifySpy = jest.spyOn(clockClient, 'notify’); // Spy on calls to notify on this clock
describe('tests for ProducerClock', () => {
beforeEach(() => {
notifySpy.mockClear(); // Clear the mock function's history

});
test('after one tick, listener should return 1', () => {
clock1.reset();
clock1.tick();
expect(notifySpy).toHaveBeenLastCalledWith(1);

});
test('after two ticks, listener should return 2', () => {
clock1.reset();
clock1.tick();
expect(notifySpy).toHaveBeenLastCalledWith(1);
clock1.tick();
expect(notifySpy).toHaveBeenLastCalledWith(2);
expect(notifySpy).toHaveBeenCalledTimes(2);

});
});

clockWithObserverPatternSpy.test.ts

• You can specify any object, and any method name (even private
methods)

• Spy on objects or entire modules

• The spy logs all calls to that method of that object or module

• The call to the original still gets made, unless the spy explicitly
supplies a substitute

• we'll illustrate this a few slides from now.

Spies can be used even when you can’t
control the SUT Syntax: jest.spyOn(object, methodName)

Let’s use mocks and spies to test the http
client from the async module

export class Echo {

/** @argument a string
* @returns a promise to return the same string
* @requires axios
* @calls https://httpbin.org/get?answer=${str}
*/

public static async echo(str: string): Promise<string> {
const res = await axios.get(`https://httpbin.org/get?answer=${str}`);
return res.data.args.answer;

}

}

EchoClass.ts

Create a spy on (axios, 'get')

import { Echo } from './EchoClass';

// etc...

test('just spying on a function runs the original', async () => {
test('echo should return its argument', async () => {
const spy1 = jest.spyOn(axios, 'get');
const str = '34';
const res = await Echo.echo(str);
expect(spy1).toHaveBeenCalled();
expect(res).toEqual(str);

});
});

echo.test.ts

• GET call was made to https://httpbin.org

Next step: define a mock for the axios call

async function mockAxiosCall(url: string) {
return { data: { args: { answer: url.split('=')[1] } } };

}

// Hmm, we better test mockAxiosCall!

describe('tests for mockAxiosCall', () => {
test('mockhttpbin should return its argument', async () => {
const url = 'https://httpbin.org/get?answer=33'
const res = await mockAxiosCall(url);
expect(res).toEqual({ data: { args: { answer: "33" } } });

});
})

echo.test.ts

Now install the mock, so the 'get' doesn't
get called.

test('mock axios.get so httpbin is not called', async () => {
jest.resetAllMocks();
const spy1 = jest.spyOn(axios, 'get').mockImplementation(mockAxiosCall);
const str = '34';
const res = await Echo.echo(str);
expect(spy1).toHaveBeenCalled();
expect(res).toEqual(str);

})

echo.test.ts

Test Doubles Have Weaknesses

• Some failures may occur purely at the integration
between components:
• The test may assume wrong behavior (wrongly encoded

by mock)

• Higher fidelity mocks can help, but still just a snapshot of
the real world

• Test doubles can be brittle:
• Spies expect a particular usage of the test double;

• The test is "brittle" because it depends on internal
behavior of SUT;

• Potential maintenance burden: as SUT evolves,
mocks must evolve.

25

Not just its IO

behavior, but

also its

dependencies

Did we correctly

model the

behavior of

httpbin?

What if we didn't want to make assumptions
about how httpbin behaves?

• We'd need to actually call httpbin.

• This is no longer a unit test; it's an integration test

• Which brings us to our next topic.

Integration Testing

But some bugs are observable only when
multiple components interact.

• These are usually because one module has
made incorrect assumptions about some
other module

• Unit tests won’t reveal such bugs

• Mocks won’t help, either (since they may
incorporate our incorrect assumptions)

• So you really need integration tests

28

1 class of 1 program
running on 1 server

1 program running
on 1 server

Mork

UnitIntegration

Integration tests may be larger, even
enormous

• Does the presence of other
jobs on our server change the
behavior of our program?

• Does the presence of the other
servers change the behavior of
our program?

29

1 class of 1
program

running on 1
server

1 program
running on 1

server

Mork

UnitIntegration

1 web server
in a cluster
of 100,000

servers

1 class of one program

running on a web

server

1 process running on a

web server

Mork

UnitIntegration

1 web server in a

cluster of 100,000
1 Google product in the

entire Google

ecosystem

Integration tests can be done in many ways

• All at once ("Big Bang")

• Top-down

• Bottom-up

• Middle-out

• Top-Bottom-Middle

• etc., etc., etc.

From SoftEng @ Google Chapter 11

• https://learning.oreilly.com/library/view/software-engineering-
at/9781492082781/ch11.html#testing_overview

Testing Distribution (How much of each kind
of testing we should do?)

32

Pyramid
Test Pattern

Integration Tests can be Flaky

• Flaky test failures are false alarms

• Most common cause of flaky test failures:
“async wait” - tests that expect some
asynchronous action to occur within a timeout

• UI Testing is often flaky and slower

• Good tests avoid relying on timing

• Good tests avoid relying on the order in which
the tests are run

[Luo et al, FSE 2014 “An empirical analysis of flaky tests”]

Async Wait
37%

Test Order
Dependency

17%

Concurrency
17%Resource Leak

10%

Network
9%

Time
4%

Random
3%

Floating Point
3%

Unordered
Collections

1%

Flaky Test Example: Async/Wait

• Most common root cause of flakiness

• Difficult to avoid, but there are mitigations:

• Have more “small” tests that don’t require
concurrency

• Ensure sufficient resources available for
running tests

• Embed reasonable error detection to classify
test failures as likely to be “flaky” vs true
failures Test fails!

Server startup
complete

Start server

Make request to
server

Wait 3 seconds for
server to start

Start Test

Too late!

Avoiding the GUI can help reduce flakiness

• GUI makes your tests slow.

• To help reduce flakiness:

• find a way to fire real HTTP requests without the
browser (e.g., supertest library)

• actual dependencies instead of mocks

• Setup the test data before every test

35

“End-to-End” Tests can be Enormous

Log in to
Amazon.com

Search for
product

Add to cart Checkout

Check:
confirmation
email received?

Check: inventory
updated?

Check:
fulfillment
request sent?

• Most effective end-to-end tests focus on high value
user interactions (UI Testing)

Acceptance Testing

Acceptance Tests can be formulated as
scenarios

• Acceptance tests are written to verify behavior from a user’s
perspective.

• The focus is on treating the application as a black-box

• Tests may be specified as given-when-then scenarios:

given there's a logged in user
and there's an article "bicycle"
when the user navigates to the "bicycle" article's detail page
and clicks the "add to basket" button
then the article "bicycle" should be in their shopping
basket

38

https://docs.cypress.io/guides/end-to-end-testing/writing-your-first-end-to-end-test

https://docs.cypress.io/guides/end-to-end-testing/writing-your-first-end-to-end-test

But how to make these human-readable
scenarios into executable tests?

• Scenarios like the one above are readable by
humans (e.g. customers)

• But they are not directly executable

• Tools like Cypress help fill this gap

• link on module page

Deployed systems create even more testing
challenges

• Clients believe “how it is now is right”,

• Not “how the API intended it to be is right”

• Writing thorough test suite is even harder, less useful

• What is a “breaking change”?

• Still: vital to detect breaking changes

• Examples:

• Detailed layout of GUIs

• Side-effects of APIs, particularly under corner-cases

40

Mock System-Level Components with
Capture/Replay

• Record the API requests and responses that clients
make

• Test new versions of the API by identifying requests
that result in different responses ("breaking
changes")

41https://www.tradeweb.com/our-markets/data--reporting/replay-service/

Current version
of API

Next version of
API

Clients (created
by many third

parties)

Capture/Replay
Proxy for
Testing

Production traffic

Production traffic

Replay production
traffic for testing

https://www.tradeweb.com/our-markets/data--reporting/replay-service/

Snapshot Tests Can Detect GUI Changes

• The first time the test runs, it saves a "snapshot" of
the rendered GUI

• Subsequent runs will fail if the snapshot changes

42

import renderer from 'react-test-renderer';

import Link from '../Link';

it('renders correctly', () => {

 const tree = renderer

 .create(<Link

page="http://www.facebook.com">Facebook</Li

nk>)

 .toJSON();

 expect(tree).toMatchSnapshot();

});

Product Owners can Assess Visual Snapshot
Tests

• Capture a visual snapshot of an application under a state

• If that snapshot changes, produce a visual report for manual sign-off

https://github.com/newsuk/AyeSpy

https://github.com/newsuk/AyeSpy

Learning Objectives for this Lesson

• You should now be prepared to:
• Design test cases for code using fakes, mocks and spies

• Explain why you might need a test double in your testing

• Explain why you might need tests that are larger than unit tests

• Explain how large, deployed systems lead to additional testing challenges

44

	Module 12 Testing Larger Things
	CS 4530: Fundamentals of Software Engineering��Module 12: Testing Larger Things
	Learning Objectives for this Lesson
	Why do we test?
	Unit Testing
	What does it mean for a unit test to succeed?
	Story so far: Tests Check Return Values
	Challenge: How to test the ProducerClock?
	Test doubles replace uncontrollable things with things that you do control
	“Test Doubles” Stand In For Other Components
	You could test the Producer Clock with a hand-built test double (a "fake")
	Now we can test using the fake observer
	Does using the fake listener solve the problem?
	Mocks are automated fakes
	You can customize your mock in many ways
	You can mock Classes and Interfaces using Jest-Mock-Extended
	Unlike mocks, spies instrument existing implementations
	Use jest.spyOn to create a spy on an object
	Spies can be used even when you can’t control the SUT
	Let’s use mocks and spies to test the http client from the async module
	Create a spy on (axios, 'get')
	Next step: define a mock for the axios call
	Now install the mock, so the 'get' doesn't get called.
	Test Doubles Have Weaknesses
	What if we didn't want to make assumptions about how httpbin behaves?
	Integration Testing
	But some bugs are observable only when multiple components interact.
	Integration tests may be larger, even enormous
	Integration tests can be done in many ways
	Testing Distribution (How much of each kind of testing we should do?)
	Integration Tests can be Flaky
	Flaky Test Example: Async/Wait
	Avoiding the GUI can help reduce flakiness
	“End-to-End” Tests can be Enormous
	Acceptance Testing
	Acceptance Tests can be formulated as scenarios
	But how to make these human-readable scenarios into executable tests?
	Deployed systems create even more testing challenges
	Mock System-Level Components with Capture/Replay
	Snapshot Tests Can Detect GUI Changes
	Product Owners can Assess Visual Snapshot Tests
	Learning Objectives for this Lesson

